REFERENCES

- Russell, A., Todd, J. and Wilson, C. L. (1934) J. Chem. Soc. 1940.
- Wenkert, E., Buckwalter, B. L., Burfitt, I. R., Gašić, M. J., Gottlieb, H. E., Hagaman, E. W., Schell, F. M. and Wovkulich, P. M. (1975) in *Topics in Carbon-13 NMR Spectroscopy* (Levy, G. C. ed.) Vol. 11, p. 81. Wiley, New York.
- Gregson, R. P., Kazlauskas, R., Murphy, P. T. and Wells, R. J. (1977) Aust. J. Chem. 30, 2527.
- Stothers, J. B. (1972) Carbon-13 NMR Spectroscopy. Academic Press, New York.
- 5. Wright, J. L. C. (1980) Phytochemistry 19, 143.
- 6. Halsall, T. G. and Hills, I. R. (1971) Chem. Commun. 448.

Phytochemistry, Vol. 20, No. 6, pp. 1453-1454, 1981. Printed in Great Britain.

0031-9422/81/061453-02 \$02.00/0 © 1981 Pergamon Press Ltd.

TWO CINNAMOYL DERIVATIVES FROM CINNAMOMUM TRIPLINERVIS

HELMUT RIPPERGER,* MARÍA DÍAZ† and KLAUS SCHREIBER*

*Institute of Plant Biochemistry, Academy of Sciences of the GDR, Halle (Saale), German Democratic Republic; †Institute of Botany, Academy of Sciences of Cuba, Havana, Cuba

(Revised received 13 October 1980)

Key Word Index—Cinnamomum triplinervis; Lauraceae; cinnamoyl derivatives; trans-3-methylsulphonylallyl transcinnamate; 3-[2-(trans-cinnamoylamino)-ethyl]-3-hydroxyindolin-2-one.

Abstract—Two new compounds have been isolated from leaves of Cinnamomum triplinervis, the spectroscopic properties of which are in accordance with the structures of trans-3-methylsulphonylallyl trans-cinnamate and 3-[2-(trans-cinnamoylamino)-ethyl]-3-hydroxyindolin-2-one.

High resolution MS revealed the elemental composition $C_{13}H_{14}O_4S$ for compound 1. In addition to signals for the trans-cinnamoyl residue the ¹H NMR spectrum shows absorption due to MeSO₂ and the transallyl moiety. Other possible structures are excluded by chemical shift considerations (see refs. [1] and [2]). High resolution electron impact MS (EI), electron addition MS, the UV and IR spectrum are in accordance with structure 1 (see Experimental).

High resolution MS proved the elemental composition to be C₁₉H₁₈N₂O₃ for compound 2. Acid hydrolysis gave the 3-hydroxyindolin-2-one derivative 3 and transcinnamic acid. The spectroscopic properties of 2 and 3 have been compared with a model compound, 3-hydroxy-3-methylindolin-2-one [3, 4]. This substance and 3 show similar IR and UV spectra (see Experimental). In dilute solution (CHCl₃) 2 possesses IR bands at 3586 (OH) and 3434 cm⁻¹ (NHCO). Compound 2 and 3-hydroxy-3-methylindolin-2-one show corresponding MS fragments (elimination of O, H₂O, CO, side-chain). Further important fragmentation is indicated schematically in formula 2. The position, intensity and appearance of the ¹H NMR signals for the indolinone part of 2 are in total agreement with those of the aromatic protons of 3-

ì

hydroxy-3-methylindolin-2-one. As expected, the ¹³CNMR spectrum contains 17 signals and is in accordance with structure 2 (see Experimental). Surprisingly, 2 is optically inactive according to ORD measurements, perhaps because of easy racemization of the benzylic carbon atom.

Compounds 1 and 2, as well as similar cinnamoyl derivatives, have not been described before in the literature.

EXPERIMENTAL

Cinnamomum triplinervis (R. & P.) Kosterm. was collected in March in Sierra del Rosario, Pinar del Rio, Cuba, and determined by Lic. Pedro Herrera. A voucher specimen is retained in the Herbarium of the Institute of Botany, Academy of Sciences of Cuba, Havana.

trans-3-Methylsulfonylallyl trans-cinnamate (1). Dried (40°) and ground leaves of C. triplinervis were extracted with EtOH at room temp. Evaporation of the major part of the solvent in vacuo gave crystals; from EtOH plates, yield 0.29 %, mp 97-100°, $v_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$: 1708 (C=O), 1637 (C=C), 1577 (C₆H₅), 1497 (C_6H_5) , 1300 $(SO_2[5])$, 1126 $(SO_2[5])$, 770 (C_6H_5) . λ_{max}^{MeOH} nm $(\log \varepsilon)$: 279 (4.34), 223 (4.13), 217 (4.20), ¹H NMR (100 MHz, $CDCl_3$, TMS): δ 2.98 (s, 3 H, MeSO₂), 4.95 (dd, J = 3 and 1 Hz, 2 H, CH_2), 6.46 (d, J = 16 Hz, 1 H, C_6H_5CH), 6.65 (dt, J = 16and 1 Hz, 1 H, 3-H of allyl), 7.02 (dt, J = 16 and 3 Hz, 1 H, 2-H of allyl), 7.42 (m, 5 H, C_6H_5), 7.76 (d, J = 16 Hz, 1 H, C₆H₅CH=CH). On irradiation at 4.95 ppm the two doublets of triplets at 6.65 and 7.02 ppm are converted into an AB quartet. MS EI, 70 eV m/z (rel. int.): 266,0618 (calc. for $C_{13}H_{14}O_4S$: 266.0613, M^+ 5), 187 (M^+ – MeSO₂; 8), 186.0682 (calc. for $C_{12}H_{10}O_2$: 186.0681; 12), 147.0450 (calc. for $C_9H_7O_2$: 147.0446, cinnamoyloxy; 3), 131.0496 (calc. for C_oH₇O: 131.0497, cinnamoyl; 100), 119.0165 (calc. for C₄H₇O₂S: 119.0167, $MeSO_2CH=CH-CH_2$; 5), 103.0545 (calc. for C_8H_7 : 103.0548, styryl: 45), 62.9909 (calc. for CH₃OS: 62.9905, MeSO [6]: 6). MS, electron addition, 2-4 eV m/z (rel. int.): 266 (M⁻ 31), 147 (100).

3-[2-(trans-Cinnamoylamino)-ethyl]-3-hydroxyindolin-2-one (2). Evaporation of the EtOH extract (see above) in vacuo gave a residue which was partitioned between 0.5 M HCl and C_6H_6 -Et₂O (1:1). After addition of NaHCO₃ to the aq. layer, the latter was extracted with CHCl₃-EtOH (2:1). Evaporation of the organic solvents gave raw material, which was chromatographed over Si gel with C₆H₆-MeOH (23:2). Crystallization from MeOH-C₆H₆ afforded **2**, yield 0.082 %, mp 162-4°. $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 1750 (γ -lactam), 1685 (amide), 1649, 758. $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log ε): 269 (4.38). ¹H NMR (100 MHz, CD₃OD, TMS): δ 2.19 (ca t, $J = 7 \text{ Hz}, C - CH_2 - C)$, 3.34 (ca t, $J = 7 \text{ Hz}, CH_2 N$), 6.48 (d, J) = 16 Hz, $C_6H_5CH_1$, 6.86-7.24 (m, indolinone), 7.38 (m, C_6H_5), 7.46 (d, J = 16 Hz, $C_6 H_5 CH = CH$). ¹³C NMR (50 MHz, CD₃OD, TMS): δ 35.7 (t), 38.1 (t) (2 CH₂), 76.5 (s, carbinol Catom), 111.4 (d), 121.8 (d), 123.8 (d), 125.2 (d), 128.8 (d), 129.9 (d), 130.6 (d), 130.7 (d), 132.5 (s), 136.3 (s), 141.6 (d), 142.6 (s) (aromatic and olefinic C-atoms), 168.4 (s), 181.7 (s) (2C=O).

MS EI, 70 eV m/z (rel. int.): 322.1315 (calc. for $C_{19}H_{18}N_2O_3$: 322.1317, M; 3), 306.1367 (calc. for $C_{19}H_{18}N_2O_2$: 306.1368, $M^+ - O$; 6), 304 ($M^+ - H_2O$; 2), 294.1360 (calc. for $C_{18}H_{18}N_2O_2$: 294.1368, $M^+ - CO$; 5), 276.1259 (calc. for $C_{18}H_{18}N_2O$: 276.1263; 2), 191 (1), 174.0917 (calc. for $C_{18}H_{16}N_2O$: 174.0919; 39), 163.0874 (calc. for $C_{9}H_{11}N_2O$: 163.0871, 191 - CO; 10), 160.0761 (calc. for $C_{10}H_{10}NO$: 160.0762; 16), 147 (McLafferty rearrangement starting from cinnamoyl carbonyl; 16), 146.0612 (calc. for $C_{9}H_{8}NO$: 146.0606; 26), 131.0499 (calc. for $C_{9}H_{7}O$: 131.0497; 100), 120.0449 (calc. for $C_{7}H_{6}NO$: 120.0449, $M^+ - CO$ - side-chain: 22), 103.0545 (calc. for $C_{8}H_{7}$: 103.0548; 56), 77.0392 (calc. for $C_{6}H_{5}$: 77.0391; 35); regarding the interpretation of formula 2. MS, electron addition, 2–4 eV m/z (rel. int.): 322 (M^- 62), 304 ($M^- - H_2O$; 67), 159 (100).

3-(2-Aminoethyl)-3-hydroxyindolin-2-one hydrochloride (3). A soln of 57 mg 2 in 9 ml cone HCl and 12.5 ml EtOH was refluxed 48 hr under N_2 . Evaporation gave a residue, from which transcinnamic acid was extracted with Et₂O (mp, IR). The remaining hydrochloride was crystallized from EtOH. Needles: mp 267–72° (decomp.). $y_{\text{max}}^{\text{RBr}}$ cm⁻¹: 1719 (y-lactam), 1621, 1471, 1198, 759. $\lambda_{\text{max}}^{\text{MeOH}}$ nm (log c): 289 (3.19), 251 (3.80). ¹H NMR (80 MHz, D₂O, TMS): δ 2.18 (ca t, J = 8 Hz, 2 H, C—CH₂—C), 3.06 (ca t, J = 8 Hz, 2 H, CH₂N), 6.93–7.42 (m, 4 H, indolinone).

3-Hydroxy-3-methylindolin-2-one. Prepared according to refs. [3,4] and chromatographed over Si gel with CHCl₃-MeOH (97:3); mp 166-8°, $v_{\rm max}^{\rm KBr}$ cm $^{-1}$: 1710 (γ -lactam), 1626, 1476, 1197, 764. $\lambda_{\rm me}^{\rm MeOH}$ nm (log ε): 287 (3.09), 253 (3.89). 1 H NMR (100 MHz, CD₃OD, TMS): δ 1.50 (s, 3 H, Me), 6.84-7.36 (m, 4 H, indolinone). MS EI, 6-16 eV m/z (rel. int.): 163 (M $^{+}$ 100), 148 (M $^{+}$ - Me; 60), 147 (M $^{+}$ - O; 40), 145 (M $^{+}$ - H₂O; 30), 135 (M $^{+}$ - CO; 100), 120 (M $^{-}$ - CO - Me; 100). MS, electron addition, 2-4 eV m/z (rel. int.): 163 (M $^{-}$ 74), 162 (90), 161 (95), 145 (M $^{-}$ - H₂O: 100).

Acknowledgements—The authors thank Dr. P. Franke, Berlin, for the high resolution MS, Dr. A. Preiß, Halle, for the ¹³C NMR measurements and express their appreciation for the excellent technical assistance of Mrs. Eva-Maria Schneider, Halle.

REFERENCES

- Pretsch, E., Clerc, T., Seibl, J. and Simon, W. (1976) Tabellen zur Strukturaufklärung organischer Verbindungen mit spektroskopischen Methoden. Springer, Berlin.
- Pascual, C., Meier, J. and Simon, W. (1966) Helv. Chim. Acta 49, 164.
- 3. Kohn, M. (1910) Monatsh. Chem. 31, 747.
- 4. Kohn, M. and Ostersetzer, A. (1911) Monatsh. Chem. 32, 905.
- Bellamy, L. J. (1958) The Infra-red Spectra of Complex Molecules, p. 360. Methuen, London.
- Budzikiewicz, H., Djerassi, C. and Williams, D. H. (1967)
 Mass Spectrometry of Organic Compounds, p. 556. Holden Day, San Francisco.